
International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

9

Samuel Putra and Wirawan Istiono, “Implementation Simple Additive Weighting in Procedural Content Generation Strategy Game,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 4, Issue 12, pp. 9-18, 2022.

Implementation Simple Additive Weighting in

Procedural Content Generation Strategy Game

Samuel Putra1, Wirawan Istiono2

 1,2Informatic, Universitas Multimedia Nusantara, Tangerang, Banten, Indonesia

Email address: samuel4@student.umn.ac.id, wirawan.istiono@umn.ac.id

Abstract— Strategy Games allows players to play a never-ending

puzzle with another person or computer, unfortunately computers has

a static thinking flow causing the human player to be able to

recognize patterns from computer opponents. Single player strategy

games uses large amounts of game contents to deal with this

problem, but today game content is becoming more and more

expensive to create. Procedural Content Generation has recently

been a popular method to solve this problem because of it’s potential

to create an endless amount of generated content. However a PCG

needs many rules in order to make a playable and appealing content.

This research creates a PCG that with an implementation using a

Simple Additive Weighting Method which is used to calculate player

inputs into a single value and then distribute that single value into

multiple outputs created by the PCG. After the game has been

created user experience was than measured before and after the SAW

implementation was added using Game Experience Questionnaire.

After the SAW implementation players positive effects towards the

game increased by 23.5%, negative effects towards the game

decreased by 29.83%, players competence increased by 19.83%, and

the games overall challenge decreased by 22%.

Keywords— Game Experience Questionnaire, Procedural Content

Generation, Simple Additive Weighting, Strategy Games.

I. INTRODUCTION

Strategy games, or especially those discussed in this study,

turn-based strategy games have a history that can be found in

civilizations thousands of years ago in places like Rome,

Greece, Egypt, and so on. The strategy game found from

various places and times that still has relevance today is chess.

Chess has simple rules but has a complexity that is still being

explored by various players around the world because it has

unlimited strategy possibilities. Strategy games give players

time to plan their actions without taking into account the

player's reactions [1]. Turn-based games also have the

advantage of enabling games on a larger scale without

burdening players with too much information [2].

When compared to strategy games made today, for

example the Fire Emblem game series or XCOM, it is

necessary to consider games played alone against the

computer, so these games rely on a lot of different content to

create variety in the game. Michael Toy created Rogue in

1980 with the aim of creating a strategy game played by the

player and the game world itself. Rogue is designed to change

every time it is played so that players cannot win the game just

by memorizing the layout design in each level of the game [3],

this concept inspires a new genre in game development,

namely roguelike. Now games with roguelike elements are

popularly used by independent games such as Spelunky

(2009), The Binding of Isaac (2011), and Hades (2020) which

are also known as hybrid roguelikes. The gameplay elements

that define roguelikes are often debated, but what is

universally agreed upon is the element of randomization in

game content [4], usually using procedural content generation

and permadeath methods which means the character used by

the player cannot be used again and must start from the

beginning of the game again. Procedural Content Generation

(PCG) allows games to always create unique obstacles for

players, thus creating a new user experience for each game

[5].

Content created by PCG is usually of lower quality than if

it was created by human designers [6]. PCG is also more

difficult to control from a usability and visual perspective. For

example if using the previous example there is a possibility

that the level made is impossible to complete because there is

no way out, a room is blocked, or some other problem

occurred [7]. The levels created also have the possibility of

looking messy, making the content recognizable as made by

computer algorithms [4], [8], and not by humans, thereby

reducing the user experience. PCG needs a lot of additional

features to prevent these problems from happening, but the

more features added the more complicated the game system

mechanics are developed and the harder it is to iterate [9].

Based on the problems described, this research will design

and build a PCG system that implements Simple Additive

Weighting to account for the generated content. PCG in this

study takes into account the level of difficulty and complexity

in the game that changes as the game progresses, so SAW is

suitable to be used because the method is quite simple and

flexible to be used in various situations [10], [11].

II. METHODOLOGY

The research methodology that will be used for the design

and development of strategy games using Procedural Content

Generation with the implementation of the Simple Additive

Weighting method, the first step in this research is Literature

Study, where in the literature study, research was conducted

on theories related to Game Design, Game Progression, Level

Design, Simple Additive Weighting Method, PCG, and how to

evaluate PCG.

Second step, in this research is creating the game, where

the game is made using the Unity software and using the C#

programming language. The game mechanism is made based

on the information obtained from the literature review. The

first stage of game creation is the creation of the game

framework, this includes the creation of game logic from the

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

10

Samuel Putra and Wirawan Istiono, “Implementation Simple Additive Weighting in Procedural Content Generation Strategy Game,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 4, Issue 12, pp. 9-18, 2022.

game view, how players can interact with the game,

interactions between game objects, artificial intelligence, etc.

After designing the game framework, a PCG is made that can

manipulate the content created during the creation of the game

framework. After PCG is complete, the SAW method is

implemented to improve the quality of content made by PCG.

Then designed, user interface, and other additional features.

The third step is game testing, where in this step testing is

done by playing and seeing the success of the mechanics of

the game made. After ensuring that the game mechanism runs

properly, the user experience will be tested using a

respondent's questionnaire. A group of respondents will be

tested by looking at the way the respondents played the game

and then using a questionnaire to get feedback from the user

experience obtained before and after the implementation of

SAW. The final step is game evaluation, where the game

evaluation is done through analyzing the results of the

questionnaire. The results of the questionnaire will be

evaluated using the metrics discussed in the literature review.

Evaluation aims to determine whether the goals of making the

game are met.

The main objective of this game is to reach the last level of

the game and defeat the last enemy. The objective of each

level is to reach the end point with a pawn or king piece.

During the game, the player also has a secondary objective,

namely to earn money by defeating enemies or taking certain

objects in the level. The player enters the application and the

initial view of the user is the main page of the game. In this

view the user can start the game, change sound settings, or exit

the game. Once the player chooses to start the game the player

needs to complete the level with the given pieces at the start of

the game. As long as the player plays the level the player can

earn money by defeating enemies or getting certain objects in

the level. After completing the first level, the next level will

start with the player deciding what to do with the money

earned. Players can buy additional pieces or strengthen

existing pieces. Once the player is ready to start the level, the

player can press the Start button and the level continues as

before. If the player makes it to the last level, which is level 30

the player needs to defeat the last enemy at that level. If the

player manages to defeat the enemy then the player will win

the game. In the game the player can press the pause button to

restart the game, or exit the game. The game will end if the

players king piece has 0 health points.
Figure 1 shows the general process of creating a map that

is played in a level. Based on the level points you have, the
difficulty level and the size of the map will change. The map
is made with a 2-dimensional integer that will be filled with
values that will be populated by the game object after the PCG
process is completed by the program. The process of SAW
Calculate Player and SAW Distribute Points is the use of the
SAW method to calculate the level of strength of the player
and use these calculations to determine the difficulty in the
map to be created. Random Make Walls is the process of
placing walls in a map that serves as an obstacle that must be
passed by the player, and Smooth Walls is the process of
tidying up the walls that are made. Random Fill Gamespace is
the process of placing certain enemy pieces or items into the
map. Populate level is the process of using a map that is

formed from all previous processes and placing game objects
based on that map. If the player reaches level 30 then all these
processes will be skipped and the player will play the last level
that was created previously.

Fig. 1. Generate Map Chess Labyrinth flowchart

Fig. 2. SAW Calculate Player Chess Labyrinth Flowchart

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

11

Samuel Putra and Wirawan Istiono, “Implementation Simple Additive Weighting in Procedural Content Generation Strategy Game,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 4, Issue 12, pp. 9-18, 2022.

Figure 2 shows the process for calculating a player's

strength level. The player's strength is measured by 4 different

values, which are translated into Point1, Point2, Point3,

Point4. Point1 is the number of pawns owned by the player,

Point2 is the level of each pawn, Point3 is the blood point of

each pawn, Point4 is the level point of the map to be created.

Each piece also has a different value according to the level of

use. All player pieces will be counted one by one and each

point will be added according to the value of their respective

importance. After each point is added up, all values are

normalized and then calculated to produce a total score

according to the importance of each point.

Fig. 3. SAW Distribute Points Chess Labyrinth Flowchart

Figure 3 shows the process for distributing the previously

obtained values into the created map. The total previous value

is distributed into several categories, namely enemy pieces,

number of walls, and other game items. Categories are

selected randomly and after one category is selected the total

value is reduced and then the next category is randomly

selected again. This process is repeated continuously until the

total value is exhausted. Each category has a different amount

of importance, this process uses the SAW method but in

reverse. After the total value is used up RandomFillWalls is

filled with the result of Point4 to assist in making the wall in

the next part of the process.

Figure 4 shows the process of placing wall game objects in

the level map. The number of walls is created randomly with

the help of RandomFillWalls obtained from the previous

process. If map[x, y] is at the edge then the value of map[x, y]

will be 1. If map[x, y] is not at the end, the program will check

randomly, if the random value obtained is less than

RandomFillWalls then map[x, y] will be 1, otherwise it will be

0. This process will be repeated until all maps are filled with

values.

Fig. 4. Random Create Walls Chess Labyrinth Flowchart

Figure 5 shows the process for smoothing the walls placed

in the previous section using the cellular automata algorithm.

First the application will do a loop. Each iteration will check

the neighbors of map[x, y]. if there is a neighbor with a value

of 1 then the wallCount variable will increase by 1. If the total

number of neighbors is more than 4 then map[x, y] will also

be worth 1. If wallCount is less than 4 then map[x, y] will be

worth 0.

Figure 6 shows the flow of placement of level obstacles

into levels. First the number of obstacles is obtained by adding

up the points 1-3 and the threshold using the total number of

points obtained from the previous section, and then the

variable a is used to speed up the looping process if random

selection produces the same value over and over again. Then

the same looping process with the placement of the walls in

the previous section begins again. If map[x, y] is 0 then the

program checks randomly, if the random value is more than

the threshold map[x, y] is ignored and continues to the next

iteration. If the random value is less than the threshold, an

obstacle object will be assigned to that point.

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

12

Samuel Putra and Wirawan Istiono, “Implementation Simple Additive Weighting in Procedural Content Generation Strategy Game,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 4, Issue 12, pp. 9-18, 2022.

Fig. 5. SmoothWalls Chess Labyrinth Flowchart

Then the obstacle is chosen randomly, if the previously

defined obstacle is selected then map[x, y] will be filled with a

new value based on the corresponding obstacle value. If the

selected hurdle is empty then random selection is started again

until a non-blank value is obtained. When the loop is complete

but not all obstacles are placed, the loop will start again from

the beginning with the threshold added by the value a to add

the probability of the obstacle selected by a random program.

Figure 7 shows the process of placing game objects on the

map. The map required by the game has been created, now all

game objects are placed in their appropriate places. The

iteration is the same as the loop in the previous section, but

taking into account the placement on the game screen,

variables a and b will represent the map variables created

earlier, while variables x and y will represent the place where

game objects will be placed in the game. If map[a, b] has a

height minus 2, an exit object will be placed, otherwise a floor

object will be placed. If map[x, y] is on the edge of the map,

then the program will place an indestructible wall, otherwise a

normal wall will be placed on the edge. If map[x, y] is worth

3, it is placed as a pawn, if it is worth 4, the program will

place a pawn randomly from the existing list of pawns, if it is

worth 5, the program will place an item from the existing list

of items. After the looping process is complete the level is

complete and ready to play.

Fig. 6. FillGameSpace Chess Labyrinth Flowchart

Fig. 7. Populate Map Chess Labyrinth Flowchart

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

13

Samuel Putra and Wirawan Istiono, “Implementation Simple Additive Weighting in Procedural Content Generation Strategy Game,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 4, Issue 12, pp. 9-18, 2022.

At the start of the game the level is set as 1 and a map of

the level will be created based on what level it is at that time.

If the level is more than 1 there will be a session to set the

player's chess pieces, if it is still level 1 the player does not

have money then this section will be skipped. If the level is

completed it will be repeated again with increased level

points. if the player loses or beats the last level then the game

will be over and given the choice to start the game again or

not, if selected not the app will close itself.

Players have various options to control the pieces they

have, the options include moving the pieces, attacking the

enemy or walls at a certain point, or activating the specific

power of certain pieces. After the player's turn is finished the

program checks whether the level is completed or not. If

finished the player earns money and the level is completed,

otherwise the enemy pieces controlled by the computer take

their turn. The computer then executes a randomly determined

action and the program checks whether the player loses or not.

If the level is completed or the player loses the game that level

is over.

The player chooses what action the piece will perform and

then the program will perform the action according to the

context at that time. If the player chooses to use a skill, which

is a special ability that certain pieces have, the program will

run the skill. If the player uses the knight’s skill then the

player will be able to move the knight piece and still be able to

make a turn, if the rook’s skill is activated then the player can

place a wall on the level, if the queen’s skill is activated then

all enemies that are within the queen’s reached will be

attacked, and if the king’s skill is activated then all the player's

pieces close to the king will have their health points increase.

If the player does not use a skill, the player can move the piece

or attack the enemy if there is an enemy that can be attacked.

If the player only wants to move the piece then the piece will

move to the location chosen by the player. If the player

chooses to attack the enemy, the piece will move to the closest

position to the enemy being attacked. After the player

performs an action then the player's turn ends and the enemy

controlled by the computer will run.

First, the program will check whether any player's pieces

can be attacked by enemy pieces. If there is, the enemy's piece

will attack the player's piece and move to the closest position

to the attacked piece. When there are no pieces to attack, the

program will randomize the pieces and moves and then try to

move the selected pieces to the selected moves. If the desired

movement is impossible, for example if there is a wall

blocking the movement, the random selection process will be

repeated again. Every time the randomization process is

carried out, the program adds one to a variable a, if the

variable a reaches 30 then the program determines that no

movement is possible and the enemy's turn will end without

any action. Before the gameplay starts the player is given the

opportunity to use the money earned from the gameplay

session to help in the next level of the game. The player

chooses the desired piece, if the piece is not owned, the player

gets a new piece, and if there is already a piece, the level is

increased. Players can start the game when it is finished.

Based on the level points you have, the difficulty and size

of the map will change. The map is made with a 2-

dimensional integer that will be filled with values that will be

populated by the game object after the PCG process is

completed by the program. If the player reaches level 30 then

all these processes will be skipped and the player will play the

last level that was created previously. Player strength is

measured by 4 different values, which are translated into

Point1, Point2, Point3, Point4. Point1 is the number of pieces

owned by the player, Point2 is the level of each piece, Point3

is the health point of each piece, Point4 is the level point of

the map to be created. Each piece also has a different value

according to the level of use. All player pieces will be counted

one by one and each point will be added according to the

value of their respective importance. After each point is added

up, all values are normalized and then calculated to produce a

total score according to the importance of each point.

The total of the previous value is distributed into several

categories, namely enemy pieces, number of walls, and other

game items. Categories are selected randomly and after one

category is selected the total value is reduced and then the next

category is randomly selected again. This process is repeated

continuously until the total value is exhausted. Each category

has a different amount of importance, this process uses the

SAW method but in reverse. After the total value is exhausted

a variable called RandomFillWalls is filled with the result of

Point4 to assist in the creation of the wall in the next part of

the process.

The number of walls are made randomly with the help of

the RandomFillWalls variable obtained from the previous

process. If map[x, y] is at the edge then the value of map[x, y]

will be 1. If map[x, y] is not at the end, the program will check

randomly, if the random value obtained is less than

RandomFillWalls then map[x, y] will be 1, otherwise it will be

0. This process will be repeated until all maps are filled with

values. First the application will do a loop. Each iteration will

check the neighbors of map[x, y]. if there is a neighbor with a

value of 1 then the wallCount variable will increase by 1. If

the total number of neighbors is more than 4 then map[x, y]

will also be worth 1. If wallCount is less than 4 then map[x, y]

will be worth 0.

The number of obstacles is obtained by adding up points 1-

3 and the threshold using the total number of points obtained

from the previous section, and then the variable a is used to

speed up the looping process if random selection produces the

same value over and over again. Then the same looping

process with the placement of the walls in the previous section

begins again. If map[x, y] is 0 then the program checks

randomly, if the random value is more than the threshold

map[x, y] is ignored and continues to the next iteration. If the

random value is less than the threshold, an obstacle object will

be assigned to that point. Then the obstacle is chosen

randomly, if the previously defined obstacle is selected then

map[x, y] will be filled with new value based on the

corresponding obstacle value. If the selected hurdle is empty

then random selection is started again until a non-blank value

is obtained. When the loop is complete but not all obstacles

are placed, the loop will start again from the beginning with

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

14

Samuel Putra and Wirawan Istiono, “Implementation Simple Additive Weighting in Procedural Content Generation Strategy Game,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 4, Issue 12, pp. 9-18, 2022.

the threshold added by the value a to add the probability of the

obstacle selected by a random program.

The map required by the game has been created, now all

game objects are placed in their appropriate places. The

iteration is the same as the loop in the previous section, but

taking into account the placement on the game screen, the

variables a and b will represent the map variables created

earlier, while the x and y variables will represent the place

where the game objects will be placed in the game. If map[a,

b] has a height minus 2, an exit object will be placed,

otherwise a floor object will be placed. If map[x, y] is on the

edge of the map, then the program will place an indestructible

wall, otherwise a normal wall will be placed on the edge. If

map[x, y] is worth 3, it is placed a pawn, if it is worth 4, the

program will place a piece randomly from the existing list of

pieces, if it is worth 5, and the program will place an item

from the existing list of items. After the looping process is

complete the level is complete and ready to be played.

III. RESULT

The game detects what the player clicks by using Unity's

RayCast feature. If the player selects a piece that the player

has then the program will remember that piece and will

initialize the available MoveTiles. The MoveTile is a visual

representation of the move options that the player can make.

AttackTiles serves to represent the choices of attacks that can

be carried out by the player’s pieces. AttackTile has the same

method as MoveTile but only appears if there are enemies to

attack. If a MoveTile is selected by the player, the program

will send the location vector from the MoveTile and send it to

the Move method in the pieces recorded by the program to

initialize the movement process. After checking that there is

no barrier between the player's piece and the goal, the piece

will be moved by the SmoothMovement method.

SmoothMovement serves to slow down movement to make it

more visually appealing to players. If the player selects an

AttackTile then the player will attack anything that is in the

AttackTile position. If the enemy is attacked, the enemy's

health points will be deducted and if it dies, the player gets

money equal to the difficulty of the defeated enemy. If the

object of the attack is a wall object, the wall will be destroyed.

First the generator adds level points and variables that will

be used in subsequent reset methods. Afterwords the generator

determines the width and height variables based on the level

of the map. Then the generator creates a two-dimensional

variable named map that uses the width and height

dimensions. The generator then deletes all objects from the

previous level that are child objects of the Map Generator

object. If the player has reached level 30 the premade level

will be created and if not, it will continue to the next method.

Before the map is formed, the program takes into account

the level of difficulty of that level using the SAW method. The

first program collects all the pieces owned by the player then

checks each piece and calculates according to the type and

condition of the piece. The importance of each criteria can be

changed from the Unity editor to fasten the testing process.

After the final score is obtained, the points are distributed to

the level’s obstacle points.

The obstacles the level has are randomly selected and

reduce the final score. The seed and the useRandomSeed

variables are used to perform the pseudo random seeding

process. Pseudo random is a random type where all

randomized values will be accessed. The result points

determine the level to be created in the following process.

One of the points specified in the SAW Calculate section

is used to create a RandomFillPercent variable that serves to

fill in the wall points of the map. First, the application does

seeding on pseudo random. The application then loops a

number of widths and heights. In the loop, if x and y are on

the edge of the map, then map[x, y] will have a value of 1.

Then if not on the edge of the map, a pseudo random value

will be checked and if the random result is less than the

randomFillPercent variable then map[x, y] will be worth 1,

and is 0 otherwise. After all the folders are filled, the

application will run the smoothWalls process 5 times.

This method uses the cellular automata algorithm. First the

application loops as much as the width and height variables. In

the loop, the application checks the number of neighbors using

the GetSurroundingWallCount method. The

GetSurroundingWallCount method is used to see if the

neighbor of map[x, y] in the map has a value of 1 or not, if the

point around that point exceeds 4 then that point will also be

worth 1. If the surrounding point is less than 4 then map[x, y]

will be worth 0. After the map is tidied up the placement of

other level obstacles can be done.

Then the program runs the RandomFillGameSpace method

which functions to add obstacles to the map part that is still

worth 0. First, the pseudo random initialization is the same as

the previous method. After that, the maximum obstacles that

the level has are calculated based on each point obtained from

the previous SAW method. Then a testInt list variable is

created from 1 to 3 with the same number value as the index in

it. How to place obstacles using the same method as the

method of placing walls above but RandomFillPercent is

replaced by totalPoints obtained from the previous SAW

method called wallThreshold. The variable a is used to add a

wallThreshold if too many iterations occur. When pseudo

random passes the wallThreshold, it will be randomized from

0 to the end of the intTest list. If a value is selected and the

points corresponding to that point are still available then the

resistance of that point is placed on map[x, y]. If the value of

random is selected and the corresponding points are empty,

the list will be reduced to ensure that it is not selected in the

next random. After all occupied obstacle points have been

placed into the map, the map is ready to be used by the

program to initialize game objects.

The map variable is adjusted to the location vector in the

game room, x and y represent the game room location vector,

while a and b represent the index in the map variable. The

program creates loops of x and y. If b is in a position before

the top edge of the map, an exit object will be created which is

always in the same place, otherwise one floor object will be

randomly selected. The floor or exit point is at the bottom

layer of other game objects, so after making a floor or exit,

check the value of map[a,b]. Here are game objects that can be

made

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

15

Samuel Putra and Wirawan Istiono, “Implementation Simple Additive Weighting in Procedural Content Generation Strategy Game,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 4, Issue 12, pp. 9-18, 2022.

Map[-, b] == (height-2) : created object exit

Map[a, b] == 0 : created a floor object

Map[a, b] == 1 : if at the edge of the map an indestructible

wall is created, otherwise an ordinary wall is made

Map[a, b] == 3: created a pawn type enemy

Map[a, b] == 4: Created enemy of type bishop, knight, rook,

or queen.

Map[a, b] == 5: a pickup object is created, which is an object

that can give money to players

After all the map points are filled the level is ready to be

played.

Fig. 8. Example Level 1 of Chess Labyrinth

Figure 8 is an example of a level 1 that can appear to

players. The player starts each level by making the first turn.

At the start of the game the player only has the king and

pawns. Players can earn money for defeating enemy pieces,

picking up game pickup objects, or completing levels. The

money earned will be displayed on the top right of the screen.

Fig. 9. Example of Chess Labyrinth Gameplay

Figure 9 is an example of the gameplay in the Chess

Labyrinth game. Players can move a pawn by selecting the

pawn they want to move, then the program will display the

moves that the pawn can make. The program also displays if

the player can attack a game object. Each type of pawn

belonging to the player has a different movement and attack.

Figure 10 provides an example of the Army Management

view. In this section the player can use the money collected

during the game. Players can get new pieces by selecting a

square that still doesn't have a pawn. Players can also increase

the level of a pawn if they select a box that already has a pawn

in it. Raising the level of a piece makes the status of the piece

such as attack points, blood points, or others increase. After

reaching a certain level a piece can get a special ability that is

unique to that piece. After the player is ready to start the

game, the player can click the start button which is under the

money display at the top right of the screen.

Fig. 10. Example Army Management session view of Chess Labyrinth

Fig. 11. Example of Generated Level from Chess Labyrinth

Figure 11 is an example of the levels created by PCG.

Each time the player completes a level, PCG will create a new

level with a difficulty level that matches the condition of the

player's pieces. After a certain number of levels the created

level will get bigger to increase the difficulty.

Fig. 12. Final Level Chess Labyrinth

Figure 12 shows the last level in the game. After reaching

level 30 players will be given the last level as a final

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

16

Samuel Putra and Wirawan Istiono, “Implementation Simple Additive Weighting in Procedural Content Generation Strategy Game,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 4, Issue 12, pp. 9-18, 2022.

challenge. Players need to defeat enemy king pieces to win the

game.

Prior to the implementation of the level map, it looked

messy because it did not have the ability to detect the

condition of the player at the level being played and could

only take advantage of one variable, namely the value of the

level being played, because of these limitations the map

creation was made with filling that did not match the player's

condition. After implementing PCG, you can create a level

map according to the player's condition because it is affected

by various additional variables such as the number of player

pieces, the types of player pieces or the number of health

points of each piece. But to determine changes in user

experience, a more proven evaluation method is needed.

Fig. 13. PCG Comparison

Figure 13 shows the PCG generated before and after the

implementation of SAW with various sizes and levels of

difficulty. The image on the left is before the SAW

implementation and the right is after. By looking at this

example, it can be seen that the changes that occurred after the

implementation of SAW, before the implementation of the

level map looked messy because it did not have the ability to

detect the condition of the player at the level being played and

could only take advantage of one variable, namely the level of

the level being played, because of these limitations, map

making made with filling that is not suitable for the condition

of the player. After implementing PCG, you can create a level

map according to the player's condition because it is affected

by various additional variables such as the number of player

pieces, the types of player pieces or the number of blood

points of each piece. But to determine changes to the user

experience, a more proven evaluation method is needed. When

making PCG it is important to do an evaluation. Evaluation is

important to see the success between assets and players. The

research also states the use of the Game Experience

Questionnaire in the form of a questionnaire to evaluate player

experience [12].

Thirty respondents were asked to play the game before and

after the implementation of SAW was applied to PCG after

being explained how to play the game and providing feedback

in the form of answering a questionnaire. The questionnaire

used is the Game Experience Questionnaire which has seven

different categories, this study will use four of the following

categories. The four points are Competence, Challenge,

Negative Effect, and Positive Effect [13], [14]. Competence

variable is used to assess the skill level of players. Challenge

variable to assess whether players feel challenged. Positive

effect to find out the positive elements experienced by players

during the game. Negative effect to find out the negative

elements that may be experienced by players. The questions

contained in the questionnaire are in the form of a collection

of statements where the player fills in whether the player

agrees with the statement or not. The question list of

questionnaire can be seen in Table I.

TABLE I. LIST OF QUESTION.

Competence category questions:

• I feel i can play the game without any problems

• I feel good/competent at the game

• I have no problem finding the right solution during the game

• I solve problems in the game quickly

Challenge category questions:

• I find the game difficult

• I often feel trapped in difficult situations during the game

• I feel challenged

Positive Effect category questions:

• I find the game fun

• I feel satisfied with the game

• I enjoy my time when i play

• I am interested in playing the game more than once

Negative Effect category questions:

• I feel bored during the game

• I find playing the game tiring

• I think of other things while playing the game

• I'm not interested in playing the game

In the questionnaire, there is five section that can be

choosen by the respondent to measure the level of user

satisfaction, such as strongly disagree (SD), disagree (D),

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

17

Samuel Putra and Wirawan Istiono, “Implementation Simple Additive Weighting in Procedural Content Generation Strategy Game,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 4, Issue 12, pp. 9-18, 2022.

neutral (N), agree (A), or strongly agree (SA). And the

evaluation result can be seen in Table II.

TABLE II. COMPETENCE EVALUATION

Before Implementation

No SD D N A SA Average

1 8 12 1 7 2 42%

2 5 14 2 7 2 51.33%

3 14 7 1 6 2 43.33%

4 7 12 2 6 3 50.66%

Final Result 46.83%

After Implementation

No SD D N A SA Average

1 2 7 6 7 8 68%

2 2 7 6 7 8 68%

3 2 6 10 5 7 66%

4 3 7 7 6 7 64.66%

Final Result 66.66%

Table II shown the result of the Competence section of the

questionnaire. According to the results of the questionnaire

before the implementation of SAW the player's competency

value was 46.83% and after the implementation of SAW the

same player got a score of 66.66%. After the implementation

of SAW, the players felt that their competence increased by

19.83%.

TABLE III. CHALLENGE EVALUATION

Before Implementation

No SD D N A SA Average

5 2 3 2 13 10 77.33%

6 1 6 5 6 14 82%

7 1 3 4 14 8 76.66%

Final Result 78.66%

After Implementation

No SD D N A SA Average

5 4 3 3 14 6 70%

6 10 12 0 7 1 44.66%

7 5 12 2 8 3 55.33%

Final Result 56.66%

Table III shown the result of the Challenge section of the

questionnaire. According to the results of the questionnaire

before the implementation of SAW the difficulty value of the

game according to the players was 78.66% and after the

implementation of SAW the players rated the difficulty of the

game by 56.66%. According to players after the

implementation of SAW the game difficulty was reduced by

22%.

TABLE IV. POSITIVE EFFECT EVALUATION

Before Implementation

No SD D N A SA Average

8 6 10 4 9 1 52.66%

9 4 17 2 6 1 48.66%

10 10 8 3 7 2 48.66%

11 6 15 3 6 0 46%

Final Result 49%

After Implementation

No SD D N A SA Average

8 1 1 3 21 4 77.33%

9 2 1 5 17 5 74.66%

10 2 6 9 5 8 67.33%

11 1 2 10 14 3 70.66%

Final Result 72.5%

Table IV shown the result of the Positive Effect section of

the questionnaire. According to the results of the questionnaire

before the implementation of SAW, the positive elements

obtained by players during the game were worth 49% and

after the implementation of SAW the positive elements

obtained by players were worth 72.5%. According to players

after the implementation of SAW the positive elements

increased by 23.5%.

TABLE V. NEGATIVE EFFECT EVALUATION

Before Implementation

No SD D N A SA Average

12 2 6 2 11 9 72.66%

13 1 3 3 17 6 76%

14 0 8 6 9 7 70%

15 1 8 5 8 8 69.33%

Final Result 72%

After Implementation

No SD D N A SA Average

12 6 16 0 7 1 47.33%

13 7 18 0 4 1 40%

14 8 13 4 4 1 42%

15 13 10 3 3 1 39.33%

Final Result 42.17%

Table V shown the result of the Negative Effect section of

the questionnaire. According to the results of the questionnaire

before the implementation of SAW, the negative elements

obtained by players during the game were worth 72% and

after the implementation of SAW, the negative elements

obtained by players were worth 42.17%. According to players

after the implementation of SAW the negative elements were

reduced by 29.83%.

IV. FUTURE WORK

In making games using PCG, it is recommended to prepare

a large variety of game objects in order to avoid game content

looking too similar to each other, even though game objects

have the same function, differences in visual appearance can

make the game more visually attractive. It is recommended

not to use the Cellular Automata algorithm to assist in the

creation of small-scale vector maps, because the effectiveness

of the algorithm decreases with the size of the map. In making

strategy games, it is advisable to emphasize the design of

comprehensive tutorials to teach users the systems to be used

and to create artificial intelligence that can adjust to the level

of difficulty of the level being played so that players can learn

the game system when the level is easier to complete.

ACKNOWLEDGMENT

Thank you to the Universitas Multimedia Nusantara,

Indonesia which has become a place for researchers to develop

this journal research. Hopefully, this research can make a

major contribution to the advancement of technology in

Indonesia.”

REFERENCES

[1] A. N. Foster, “The process of learning in a simulation strategy game:

Disciplinary knowledge construction,” Journal of Educational
Computing Research, vol. 45, no. 1, pp. 1–27, 2011.

[2] S. Dor, “Strategy in games or strategy games: Dictionary and

International Journal of Multidisciplinary Research and Publications
 ISSN (Online): 2581-6187

18

Samuel Putra and Wirawan Istiono, “Implementation Simple Additive Weighting in Procedural Content Generation Strategy Game,”

International Journal of Multidisciplinary Research and Publications (IJMRAP), Volume 4, Issue 12, pp. 9-18, 2022.

encyclopaedic definitions for game studies,” Game Studies, vol. 18, no.
1, 2018.

[3] A. Y. C. Leong, M. H. Yong, and M. H. Lin, “The effect of strategy

game types on inhibition,” Psychological Research, no. 0123456789,
2022.

[4] D. Hooshyar, M. Yousefi, and H. Lim, “A Procedural Content

Generation-Based Framework for Educational Games: Toward a
Tailored Data-Driven Game for Developing Early English Reading

Skills,” Journal of Educational Computing Research, vol. 56, no. 2, pp.
293–310, 2018.

[5] J. Aycock, Procedural Content Generation in Games. Switzerland:

Computational Synthesis and Creative Systems, 2016.
[6] J. Togelius et al., “Procedural Content Generation : Goals, Challenges

and Actionable Steps,” Artificial and Computational Intelligence in

Games, vol. 6, no. July, pp. 61–75, 2013.

[7] W. Istiono, “Does the Education Games with adding some

Entertainment Game Elements will attract the children?,” International

Journal of Advanced Trends in Computer Science and Engineering,
vol. 10, no. 4, pp. 2721–2726, 2021.

[8] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural

content generation for games: A survey,” ACM Transactions on
Multimedia Computing, Communications and Applications, vol. 9, no.

1, 2013.

[9] A. W. Istiono and A. Waworuntu, “What element that influence

preschool and elementary school children to enjoy playing education
games ?,” International Journal of Advanced Studies, vol. 9, no. 12, pp.

9–13, 2021.

[10] D. Wira Trise Putra and A. Agustian Punggara, “Comparison Analysis
of Simple Additive Weighting (SAW) and Weigthed Product (WP) in

Decision Support Systems,” MATEC Web of Conferences, vol. 215, pp.

1–5, 2018.
[11] A. Setyawan, F. Y. Arini, and I. Akhlis, “Comparative Analysis of

Simple Additive Weighting Method and Weighted Product Method to
New Employee Recruitment Decision Support System (DSS) at PT.

Warta Media Nusantara,” Scientific Journal of Informatics, vol. 4, no.

1, pp. 34–42, 2017.
[12] D. M. De Carli, F. Bevilacqua, C. T. Pozzer, and M. C. D’Ornellas, “A

survey of procedural content generation techniques suitable to game

development,” Brazilian Symposium on Games and Digital

Entertainment, SBGAMES, no. September 2018, pp. 26–35, 2011.

[13] M. H. Phan, J. R. Keebler, and B. S. Chaparro, “The Development and

Validation of the Game User Experience Satisfaction Scale (GUESS),”
Human Factors, vol. 58, no. 8, pp. 1217–1247, 2016.

[14] K. L. Norman, “GEQ (Game Engagement/experience questionnaire): A

review of two papers,” Interacting with Computers, vol. 25, no. 4, pp.
278–283, 2013.

